Wallet Security

 $35 th\ Chaos\ Communication\ Congreß,\ Leipzig,\ Germany$

Stephan Verbücheln December 28, 2018

My Background

Professional Background

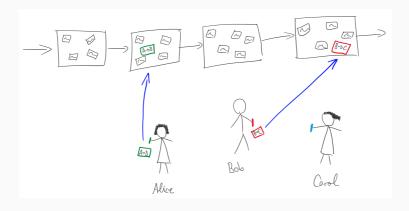
- Diplominformatiker (eq. master's degree in CS)
- Security Analyst (cnlab security ag, Switzerland)

Blockchain-related work

- Research on zero-knowledge proofs and Zerocoin (predecessor of predecessor of Zcash)
- Research on ECDSA attacks in the context of Bitcoin
- Blockchain protocol architect (Trestor, Canada/India)
- Blockchain security review (Æternity, Liechtenstein)
- Wallet security review (several)

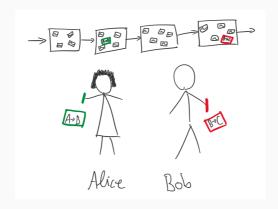
Agenda

- Recap of Bitcoin and ECDSA
- Wallets
- Common attacks
- Kleptographic attack
- Conclusions


Bitcoin

Bitcoin

Public ledger for transactions.

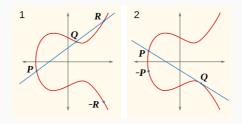

- Users have public-private key pairs.
- Transactions are signed with private keys.
- Transactions are published on the blockchain.

The Network

- Alice creates a transaction to Bob and broadcasts it
- Miners collect transactions and include them
- Eventually one miner mines a block with the transaction
- Bob waits for a few blocks to confirm

Transactions

Alice creates the transaction as follows:


- Alice selects a coin that she owns
- She writes a transaction to Bob's address
- She signs the transaction with her private key

ECDSA

ECDSA

- Elliptic-Curve Digital Signature Algorithm
- Evolution of related algorithms:
 - Diffie-Hellman (discrete logarithm modulo *p*)
 - ElGamal signature
 - Schnorr signature
 - Digital Signature Algorithm (DSA)
- Why elliptic curves?
 - RSA and DH have no future
 - 4096-bit keys are not significantly stronger than 2048-bit keys

Elliptic Curves

Point $P = (p_1, p_2)$ on a curve $y^2 = x^3 + ax + b$

- 1. Addition:
 - P + Q + R := 0
 - P+Q=-R
- 2. Scalar multiplication:
 - P + Q + Q := 0
 - 2Q := Q + Q = -P

Easy to compute: Q = dG. Hard to compute the reverse.

Signatures

Point G (order n), hash function \mathcal{H} .

Private key d, public key Q = dG.

sign(m)

- 1. Pick random nonce k < n.
- 2. Compute $R = (r_1, r_2) = kG$.
- 3. Compute $r = r_1 \mod n$.
- 4. Compute $s = k^{-1}(\mathcal{H}(m) + dr) \mod n$.
- 5. Return (r,s).

$\operatorname{verify}(m,(r,s))$

- 1. Compute $R' = (r'_1, r'_2) = s^{-1}\mathcal{H}(m)G + s^{-1}rQ$.
- 2. Compute $r' = r'_1 \mod n$.
- 3. Test whether r = r'.

Properties

```
Point G (order n), hash function \mathcal{H}.
Private key d, public key Q = dG.
```

- sign(m)
 - 1. Pick random nonce k < n.
 - 2. Compute $R = (r_1, r_2) = kG$.
 - 3. Compute $r = r_1 \mod n$.
 - 4. Compute $s = k^{-1}(\mathcal{H}(m) + dr) \mod n$.
 - 5. Return (r,s).

Observation:

- With k you can compute $d = (\mathcal{H}(m) sk)r^{-1} \mod n$.
- This means that *k* has to be kept secret.

Wallets

Wallets

- Secure storage of secret keys
- Signing of transactions
- Backup plans

Sofware Wallets vs. Hardware Tokens

Types of wallets

- Software
 - Can be used on desktop, laptop, phone, server
 - Flexible, full user control
 - Keys might be exposed through attacks on the host
- Hardware
 - Dedicated hardware tokens
 - Keys cannot be accessed from the host
 - How does the token know what it is signing?
- Paper
 - Backup only

Hardware Key Storage

Properties

- Keys are imported or generated in hardware
- Keys can be flagged non-exportable
- Signatures are performed inside the hardware module
- But note: Privileged access enables to *use* the keys.

Downsides

- Bugs cannot be easily fixed
- Implementation cannot be validated by the user

Examples

- Server HSM (hardware security module)
- TPM in business laptops
- Smartphone

Common Problems and Attacks

- Secrets leaked via network
 - Backdoors
 - Malware
- Secrets stored insecurely
 - Hardware theft
 - Malware
- Predictable random numbers
 - Attacker guesses private keys
 - Collision (re-use) of nonce *k*

Cryptographic Backdoors

Backdoor'd random number generators

• Famous example: Dual_EC_DRBG

Malicious wallet with cryptographic backdoor

- The nonce k is generated by a backdoor'd RNG.
- Attacker scans all transactions on the blockchain
- ... and uses his backdoor to compute the secret key d.

Kleptograms

Kleptograms

• Term first coined by Adam Young and Moti Yung in 1997.

Notation

- Lower-case letters $(a, t, k_1, ...)$ for numbers
- Capital letters (G, A, ...) for points on the curve
- Greek letters $(\alpha, \beta, \omega, ...)$ for constants
- $\Re(\cdot)$ is a random-number generator

Predictable *R*

RNG \Re . Generating two subsequent choices k_1 , k_2 :

First round.

- 1. Pick random $k_1 < n$.
- 2. Store k_1 .
- 3. Output k_1 and $R_1 = k_1G$.

Note that R_1 will be part of the signature.

Second round.

- 1. Compute $k_2 = \Re(R_1)$.
- 2. Output k_2 and $R_2 = k_2G$.

Extraction of k2

Second round.

- 1. Compute $k_2 = \Re(R_1)$.
- 2. Output k_2 and $R_2 = k_2G$.

Extraction of the (secret) value k_2 :

1. Compute $k_2 = \Re(R_1)$

Observation:

- Anyone can compute $k_2 = \Re(R_1)$.
- Can we hide it?

Kleptogram in R₂

Attacker's key pair a and A = aG. RNG \Re . Generating two subsequent choices k_1 , k_2 :

First round.

- 1. Pick random $k_1 < n$.
- 2. Store k_1 .
- 3. Output k_1 and $R_1 = k_1G$.

Second round.

- 1. Pick random bit $t \in \{0, 1\}$.
- 2. Compute $Z = (\mathbf{k_1} \omega t)G + (-\alpha \mathbf{k_1} \beta)A$.
- 3. Compute $k_2 = \Re(Z)$.
- 4. Output k_2 and $R_2 = k_2G$.

Extraction of **k**₂

Second round.

- 1. Pick random bit $t \in \{0, 1\}$.
- 2. Compute $Z = (\mathbf{k_1} \omega t)G + (-\alpha \mathbf{k_1} \beta)A$.
- 3. Compute $k_2 = \Re(Z)$.
- 4. Output k_2 and $R_2 = k_2G$.

Extraction of the (secret) value k_2 :

- 1. Compute $T = \alpha R_1 + \beta G$.
- 2. Compute $Z_1 = R_1 aT$.
- 3. If $R_2 = \Re(Z_1)G$ then output $k_2 = \Re(Z_1)$.
- 4. Compute $Z_2 = Z_1 \omega G$.
- 5. If $R_2 = \Re(Z_2)G$ then output $k_2 = \Re(Z_2)$.

Attack on Wallets

Attack Scenario

Preparation

• The attacker backdoors a popular wallet.

Patience

- Victims create transactions with the wallet.
- Following the Bitcoin protocol, transactions are published on the blockchain.

Harvest

- The attacker scans the blockchain for signatures generated by the same key.
- The attacker uses his secret to derive private keys.

Attack Properties

- Only reused keys are vulnerable.
 - Using the same key multiple times is common in Bitcoin.
 - The same key might be used in one transaction.
- But note, that some applications require key reuse.
- Also note that in deterministic wallets, the attacker might derive further keys.

Notes

- The attack is independent from the consensus in Bitcoin.
- It applies to other blockchains with similar signatures.
- The backdoor also applies to other protocols using ECDSA.

Conclusions

Conclusions

What does this mean for users?

- Keys can be leaked through transactions.
- No side channel required.
- Cannot be detected by traffic analysis.

What to do now?

- Be very careful choosing your wallet.
- Even in an isolated environment.
- For some applications, transparency might be more important than tampering resistance.

Contact and References

Contact: verbuecheln@posteo.de

PGP fingerprint: 41D6 B8D2 A422 5DF1 AEE1 EA63 6035 4259 0A3C 7C62

References

- IETF, RFC 6979: Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA), 2013
- Adam Young, Moti Yung, The Prevalence of Kleptographic Attacks on Discrete-Log based Cryptosystems, CRYPTO '97
- Stephan Verbücheln, How Perfect Offline Wallets Can Still Leak Bitcoin Private Keys, MCIS 2015

Pictures

• Curve diagram based on work by Wikipedia/SuperManu (GNU FDL)