

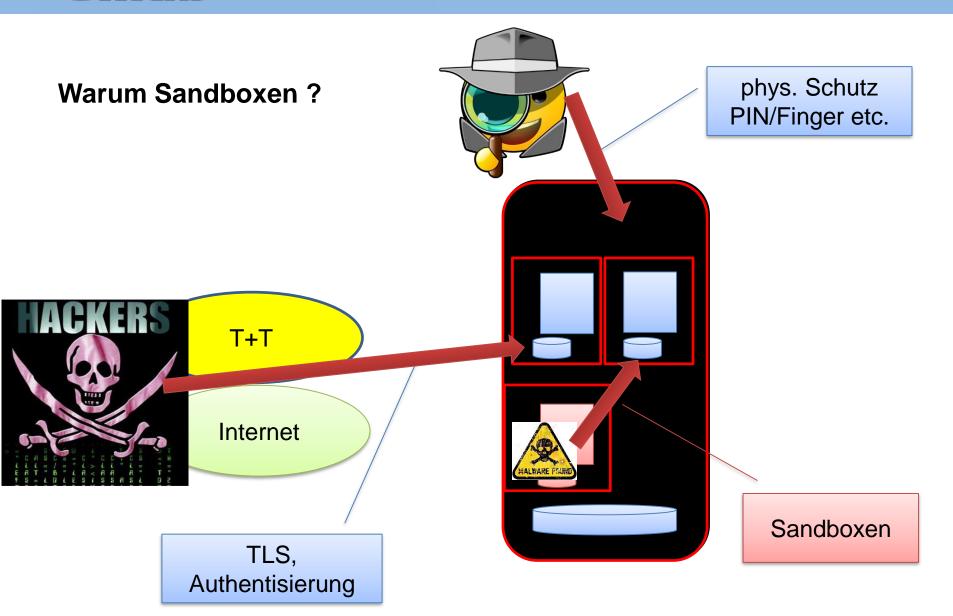
Cnlab/CSI Herbsttagung 2017

Apps und Sandboxen

Agenda

- App-Technologien
- Integrität von Apps
- Schutzmechanismen iOS und Android
- Vergleich mit Standard-PC
- Fazit

Android: Erfolgreich und schon bald am Ende


Googles Smartphone-Betriebssystem schleppt so viele Altlasten herum, dass es keine Zukunft hat. Doch mutmasslich ist ein Nachfolger in Arbeit.

TA Online vom 23.8.2017

https://www.tagesanzeiger.ch/digital/computer/android-erfolgreich-und-schon-bald-am-ende/story/12380331

Standard App: Native App

- Geladen vom Store
- Start via Icon
- Nativer Code (Objective-C, Java)
- Läuft in der eigenen Sandbox
- Voller Integritäts-Check

Schwierigkeiten:

Speziallösung für jede **Plattform**

+

***** → ▼ ▲ ■ 13:10

Zwischen-Variante: Hybride App

- Geladen vom App-Store
- Start via Icon
- Nativer Code (Rahmen)
- HTML Web-Views (on-line oder Cache)

- Läuft in der eigenen Sandbox
- Partieller Integritäts-Check

Schwierigkeiten:

 Web-Views sind nicht voll kontrollierbar

Neuer Trend: Progressive Web App (PWA)

- Start via URL im Browser (optional via Icon)
- HTML-5, CSS3 und JavaScript online
- Browser-Caching für Offline-Funktion
- Läuft in der Browser-Sandbox
- Kein Integritäts-Check

Vergleich der App-Technologien:

Kriterium	Native	Hybrid	PWA
Integritätsschutz	Hoch	Mittel	Tief
Kapselung: Sandbox	Hoch	Mittel	Tief
Kapselung: Keys	Hoch	Hoch	Tief
Anti-Engineering-Schutz	Hoch	Mittel	Tief
Flexibilität Peripherie	Hoch	Hoch	Mittel
Plattform-Abhängigkeit	Hoch	Mittel	Tief
Abhängigkeit vom Store	Hoch	Mittel	Tief

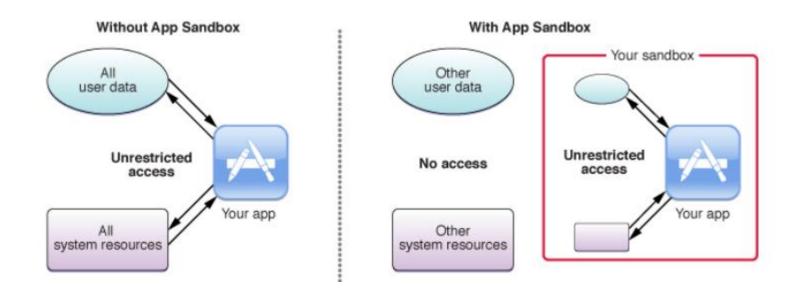
Beachte: Die Unterschiede bei Funktionalität, Look&Feel, Offline-Fähigkeit sind nur noch gering.

Sandboxen sind nur dann voll wirksam, wenn die Apps sich korrekt verhalten.

Standard-Windows-Anwendungen

Integrität von Apps

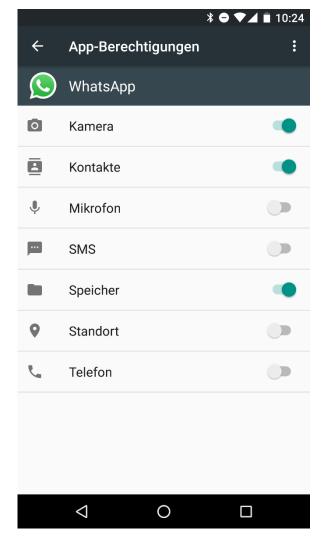
Thema	iOS	Android	Windows
Initialprüfung	Durch Apple	(Durch Anwender)	keine
Verteilung	App Store	Play Store oder direkt	Nicht kontrolliert
Integritätscheck bei Installation	Signatur von Apple	Eine gültige Signatur	Signatur optional
Check bei Update	Signatur von Apple und App-ID	Signatur des Herausgebers	Nicht systematisch
Integritätscheck beim Start	Keine	Keine	Keine
Zugriff auf Schlüsselspeicher	App-ID	App-ID	Rechte des Run-Users
Zugriff auf Inter-App- Kommunikation	App-iD gem. Vorgaben des Autors	App.ID gem. Vorgaben des Autors	Rechte des Run-Users

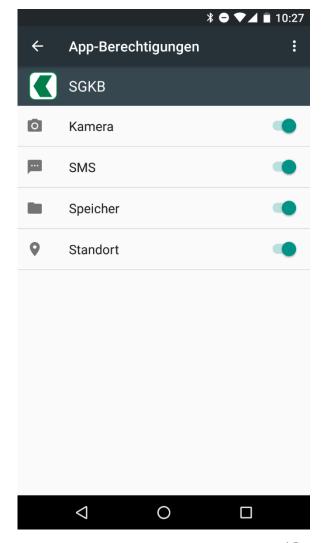

Trusted Execution Environment

TEE stellt eine sichere Laufzeitumgebung für Applikationen zur Verfügung.

Begriff		iOS und Android	Windows
TPM	Trusted platform module	Schlüssel-Speicher,Basis-Krypto-FunktionenAuthentisierung und Autorisierung	In Windows Standard
CPU	Prozessor	Prozess-Isolierung	Standard
TEE	Trusted execution environment	Peripherie-Isolierung, sichere Vertriebs-Prozesse	nur auf BIOS-Stufe
Sandbox	geschützte Run-Time	 Eigenes File-System pro App Restriktives API, Kontrollierte Inter-App-Kommunikation eingeschränkter Run-User (iOS) Eigener Run-User pro App (Android) 	rudimentär
Арр	Anwendung	Zusammenfassung der Funktionen (Kapselung)	teilweise

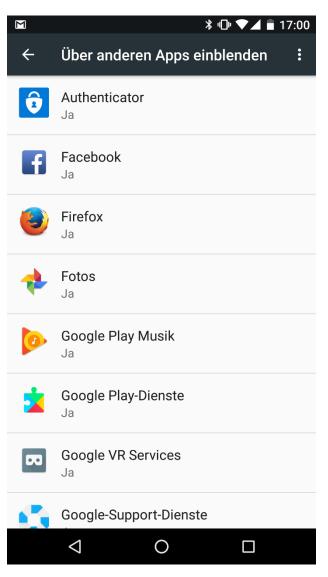
Die iOS-Sandbox


..the App Sandbox strategy is twofold:


- 1. App Sandbox enables you to describe how your app interacts with the system. The system then grants your app the access it needs to get its job done, and no more.
- 2. App Sandbox allows the user to transparently grant your app additional access by way of Open and Save dialogs, drag and drop, and other familiar user interactions.

Quelle: developer.apple.com

App-Rechte in Android (2 Beispiele)



Wer hat das «SYSTEM_ALERT_WINDOW»-Recht?

Einstellungen → Apps → «Zahnrad» → Spezieller Zugriff → Über andern Apps einblenden

Keychain und KeyStore

Thema	iOS Keychain	Android KeyStore	Bemerkungen
TPM-basiert	X	(X)	Herstellerabhängig
App-Bindung	Х	Х	
PIN-Schutz	Х	Х	
FPR-Schutz	Х	Х	
Krypto-Fkt.	Х	Х	• z.B. S/MIME
Backup lokal	X	Х	PW-Schutz bei iOSGerätebindung möglich
Backup Cloud	X	Х	iOS: Keychain an Gerät gebundenAndroid: Kein Key Store im Backup
Symm. Keys	X	Х	
Asymm. Keys	Х	Х	
Strings	X	(X)	

Thesen

- Mobile Geräte bieten bessere Sicherheitsfunktionen als Standard-PCs. (Windows, OSX).
- 2. Apps können sehr sicher gemacht werden.
- 3. Native und Hybride Apps sind sicherer als PWAs
- 4. Ein paar Dinge muss man beachten:
 - Alte mobile-Geräte müssen ersetzt werden.
 - Nur Apps vom Store verwenden.
 - Updates sind wichtig.

Danke

Paul Schöbi paul.schoebi@cnlab.ch +41 55 214 33 33